Application of modified superposition model to viscoelastic behavior of periodontal ligament

نویسندگان

  • Javad Hazrati
  • Behnam Mirzakouchaki
چکیده

The periodontal ligament (PDL) is a soft biological tissue which shows a strongly nonlinear and time dependent mechanical behavior. Recent experiments on rabbit PDL revealed that the rate of stress relaxation is strain dependent. This nonlinear behavior of PDL cannot be described well by the separable quasi linear viscoelasticity theory which is usually used in tissue biomechanics. Therefore, PDL requires a more general description which considers this nonlinearity and time dependency. The purpose of this study was to model strain dependent stress relaxation behavior of PDL using modified superposition method. It is shown herein that modified superposition method describes viscoelastic nonlinearties well and shows a good compatibility with available experimental PDL data. Hence, the modified superposition model is suggested to describe periodontal ligament data, because it can suitably demonstrate both elastic nonlinearity and strain-dependent stress relaxation behavior of PDL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mathematical Approach for Describing Time-Dependent Poisson’s Ratios of Periodontal Ligaments

Periodontal ligament is a thin layer of soft tissue that connects root of a tooth to the surrounding alveolar bone. These ligaments play an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. The majority of such soft tissues exhibit as viscoelastic bodies or have a time-dependent behavior. Due to the viscoelastic behavior of the periodontal ...

متن کامل

Application of nonlinear viscoelastic models to describe ligament behavior.

Recent experiments in rat medial collateral ligament revealed that the rate of stress relaxation is strain dependent and the rate of creep is stress dependent. This nonlinear behavior requires a more general description than the separable quasilinear viscoelasticity theory commonly used in tissue biomechanics. The purpose of this study was to determine whether the nonlinear theory of Schapery o...

متن کامل

A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments

Introduction: Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and espe...

متن کامل

Viscoelasticity of periodontal ligament: an analytical model

BACKGROUND Understanding of viscoelastic behaviour of a periodontal membrane under physiological conditions is important for many orthodontic problems. A new analytic model of a nearly incompressible viscoelastic periodontal ligament is suggested, employing symmetrical paraboloids to describe its internal and external surfaces. METHODS In the model, a tooth root is assumed to be a rigid body,...

متن کامل

In vitro time-dependent response of periodontal ligament to mechanical loading.

This study examined the time-dependent response of bovine periodontal ligament (PDL). Applying linear viscoelastic theory, the objective was 1) to examine the linearity of the PDL's response in terms of its scaling and superposition property and 2) to generate the phase lag-vs.-frequency spectrum graph. PDL specimens were tested under three separate straining conditions: 1) tension ramp tests c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008